Computing J-multiplicity

نویسندگان

  • Koji Nishida
  • Bernd Ulrich
چکیده

The j-multiplicity is an invariant that can be defined for any ideal in a Noetherian local ring (R, m). It is equal to the Hilbert-Samuel multiplicity if the ideal is m-primary. In this paper we explore the computability of the j-multiplicity, giving another proof for the length formula and the additive formula.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions

This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.

متن کامل

Statistical Exploration of Fragmentation Phase Space and Source Sizes in Nuclear Multifragmentation

The multiplicity distributions for individual fragment Z values in nuclear multifragmentation are binomial. The extracted maximum value of the multiplicity, mZ , is found to depend on Z according to mZ = Z0/Z, where Z0 is the source size. This is shown to be a strong indication of statistical coverage of fragmentation phase space. The inferred source sizes coincide with those extracted from the...

متن کامل

COMPUTING WIENER INDEX OF HAC5C7[p, q] NANOTUBES BY GAP PROGRAM

The Wiener index of a graph Gis defined as W(G) =1/2[Sum(d(i,j)] over all pair of elements of V(G), where V (G) is the set of vertices of G and d(i, j) is the distance between vertices i and j. In this paper, we give an algorithm by GAP program that can be compute the Wiener index for any graph also we compute the Wiener index of HAC5C7[p, q] and HAC5C6C7[p, q] nanotubes by this program.

متن کامل

A numerical-symbolic algorithm for computing the multiplicity of a component of an algebraic set

Let F1, F2, . . . , Ft be multivariate polynomials (with complex coefficients) in the variables z1, z2, . . . , zn. The common zero locus of these polynomials, V (F1, F2, . . . , Ft) = {p ∈ C|Fi(p) = 0 for 1 ≤ i ≤ t}, determines an algebraic set. This algebraic set decomposes into a union of simpler, irreducible components. The set of polynomials imposes on each component a positive integer kno...

متن کامل

A Framework for the Complexity of High-Multiplicity Scheduling Problems

The purpose of this note is to propose a complexity framework for the analysis of high multiplicity scheduling problems. Part of this framework relies on earlier work aiming at the definition of outputsensitive complexity measures for the analysis of algorithms which produce “large” outputs. However, different classes emerge according as we look at schedules as sets of starting times, or as rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008